AskDefine | Define landslide

Dictionary Definition



1 an overwhelming electoral victory; "Roosevelt defeated Hoover in a landslide"
2 a slide of a large mass of dirt and rock down a mountain or cliff [syn: landslip]

User Contributed Dictionary




  1. Of an election or vote, won by a large majority.


  1. A natural disaster that involves the breakup and downhill flow of rock, mud, water and anything caught in the path.
  2. A vote won by a wide or overwhelming majority.
    The candidate won by a landslide.



natural disaster

See also

Extensive Definition

main Causes of landslides Landslides are caused when the stability of a slope changes from a stable to an unstable condition. A change in the stability of a slope can be caused by a number of factors, acting together or alone:
Natural causes:
Human causes:

Types of landslide

sync Landslide classification

Debris flow

Slope material that becomes saturated with water may develop into a debris flow or mud flow. The resulting slurry of rock and mud may pick up trees, houses, and cars, thus blocking bridges and tributaries causing flooding along its path.
Debris flow is often mistaken for flash flood, but they are entirely different processes.
Muddy-debris flows in alpine areas cause severe damage to structures and infrastructure and often claim human lives. Muddy-debris flows can start as a result of slope-related factors, and shallow landslides can dam stream beds, provoking temporary water blockage. As the impoundments fail, a "domino effect" may be created, with a remarkable growth in the volume of the flowing mass, which takes up the debris in the stream channel. The solid-liquid mixture can reach densities of up to 2 tons/m³ and velocities of up to 14 m/s (Chiarle and Luino, 1998; Arattano, 2003). These processes normally cause the first severe road interruptions, due not only to deposits accumulated on the road (from several cubic metres to hundreds of cubic metres), but in some cases to the complete removal of bridges or roadways or railways crossing the stream channel. Damage usually derive from a common underestimation of mud-debris flows: in the alpine valleys, for example, bridges are frequently destroyed by the impact force of the flow because their span is usually calculated only for a water discharge. For a small basin in the Italian Alps (area = 1.76 km²) affected by a debris flow, Chiarle and Luino (1998) estimated a peak discharge of 750 m3/s for a section located in the middle stretch of the main channel. At the same cross section, the maximum foreseeable water discharge (by HEC-1), was 19 m³/s, a value about 40 times lower than that calculated for the debris flow that occurred.

Earth flow

Earthflows are downslope, viscous flows of saturated, fine-grained materials, that move at any speed from slow to fast. Typically, they can move at speeds from .17 to 20 km/h. Though these are a lot like mudflows, overall they are slower moving and are covered with solid material carried along by flow from within. They are different from fluid flows in that they are more rapid. Clay, fine sand and silt, and fine-grained, pyroclastic material are all susceptible to earthflows. The velocity of the earthflow is all dependent on how much water content is in the flow itself: if there is more water content in the flow, the higher the velocity will be.
These flows usually begin when the pore pressures in a fine-grained mass increase until enough of the weight of the material is supported by pore water to significantly decrease the internal shearing strength of the material. This thereby creates a bulging lobe which advances with a slow, rolling motion. As these lobes spread out, drainage of the mass increases and the margins dry out, thereby lowering the overall velocity of the flow. This process causes the flow to thicken. The bulbous variety of earthflows are not that spectacular, but they are much more common than their rapid counterparts. They develop a sag at their heads and are usually derived from the slumping at the source.
Earthflows occur much more during periods of high precipitation, which saturates the ground and adds water to the slope content. Fissures develop during the movement of clay-like material creates the intrusion of water into the earthflows. Water then increases the pore-water pressure and reduces the shearing strength of the material.


A sturzstrom is a rare, poorly understood type of landslide, typically with a long run-out. Often very large, these slides are unusually mobile, flowing very far over a low angle, flat, or even slightly uphill terrain. They are suspected of "riding" on a blanket of pressurized air, thus reducing friction with the current underlying surface.

Shallow landslide

Landslide in which the sliding surface is located within the soil mantle or weathered bedrock (typically to a depth from few decimetres to some metres). They usually include debris slides, debris flow, and failures of road cut-slopes. Landslides occurring as single large blocks of rock moving slowly down slope are sometimes called block glides.
Shallow landslides can often happen in areas that have slopes with high permeable soils on top of low permeable bottom soils. The low permeable, bottom soils trap the water in the shallower, high permeable soils creating high water pressure in the top soils. As the top soils are filled with water and become heavy, slopes can become very unstable and slide over the low permeable bottom soils. Say there is a slope with silt and sand as its top soil and bedrock as its bottom soil. During an intense rainstorm, the bedrock will keep the rain trapped in the top soils of silt and sand. As the topsoil becomes saturated and heavy, it can start to slide over the bedrock and become a shallow landslide. R. H. Campbell did a study on shallow landslides on Santa Cruz Island California. He notes that if permeability decreases with depth, a perched water table may develop in soils at intense precipitation. When pore water pressures are sufficent to reduce effective normal stress to a critical level, failure occurs.

Deep-seated landslide

Landslides in which the sliding surface is mostly deeply located below the maximum rooting depth of trees (typically to depths greater than ten metres). Deep-seated landslides usually involve deep regolith, weathered rock, and/or bedrock and include large slope failure associated with translational, rotational, or complex movement.

Related phenomena

  • An avalanche, similar in mechanism to a landslide, involves a large amount of ice, snow and rock falling quickly down the side of a mountain.
  • A pyroclastic flow is caused by a collapsing cloud of hot ash, gas and rocks from a volcanic explosion that moves rapidly down an erupting volcano.

Historical landslides

Extraterrestrial landslides

Evidence of past landslides has been detected on many bodies in the solar system, but since most observations are made by probes that only observe for a limited time and most bodies in the solar system appear to be geologically inactive not many landslides are known to have happened in recent times. Both Venus and Mars have been subject to long-term mapping by orbiting satellites, and examples of recent landslides have been observed on both.
landslide in Bengali: ভূমিধ্বস
landslide in Bulgarian: Свлачище
landslide in German: Erdrutsch
landslide in Spanish: Corrimiento de tierra
landslide in Esperanto: Terglito
landslide in French: Glissement de terrain
landslide in Indonesian: Tanah longsor
landslide in Icelandic: Berghlaup
landslide in Italian: Frana
landslide in Lithuanian: Nuošliauža
landslide in Malay (macrolanguage): Tanah runtuh
landslide in Dutch: Aardverschuiving
landslide in Japanese: 地すべり
landslide in Polish: Osuwisko
landslide in Portuguese: Deslizamento de terra
landslide in Romanian: Alunecare de teren
landslide in Quechua: Lluqlla
landslide in Russian: Оползень
landslide in Simple English: Landslide
landslide in Slovak: Zosuv svahu
landslide in Finnish: Maanvyöry
landslide in Swedish: Jordskred
landslide in Turkish: Heyelan
landslide in Ukrainian: Зсув ґрунту
landslide in Chinese: 山崩

Synonyms, Antonyms and Related Words

Cadmean victory, KO, Pyrrhic victory, abundance, affluence, ample sufficiency, ampleness, amplitude, ascendancy, avalanche, bonanza, bountifulness, bountiousness, bumper crop, championship, coast, conquest, copiousness, count, deluge, easy victory, election returns, embarras de richesses, enough, extravagance, extravagancy, exuberance, fertility, flood, flow, foison, full measure, fullness, generosity, generousness, glide, glissade, glissando, grand slam, great abundance, great plenty, gush, inundation, knockout, landslide victory, landslip, lavishness, liberality, liberalness, lots, luxuriance, mastery, maximum, money to burn, moral victory, more than enough, much, myriad, myriads, numerousness, official count, opulence, opulency, outpouring, overabundance, overaccumulation, overbounteousness, overcopiousness, overdose, overflow, overlavishness, overluxuriance, overmeasure, overmuchness, overnumerousness, overplentifulness, overplenty, overpopulation, overprofusion, oversufficiency, oversupply, picnic, plenitude, plenteousness, plentifulness, plenty, plethora, poll, prevalence, prodigality, productiveness, profuseness, profusion, pushover, quantities, recount, redundancy, repleteness, repletion, returns, rich harvest, rich vein, richness, riot, riotousness, runaway victory, scads, shower, sideslip, skid, slide, slip, slippage, slither, snowslide, snowslip, spate, stream, subdual, subduing, subsidence, substantiality, substantialness, success, superabundance, superflux, teemingness, tidal wave, total victory, triumph, victory, walkaway, walkover, wealth, win, winning, winning streak
Privacy Policy, About Us, Terms and Conditions, Contact Us
Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2
Material from Wikipedia, Wiktionary, Dict
Valid HTML 4.01 Strict, Valid CSS Level 2.1